# Studies on Fused Pyrimidine Derivatives. Part 12. ${ }^{1}$ Reaction of 6-(Alk-2-enylamino)-5-formyl-1,3-dimethylpyrimidine-2,4(1H,3H)-diones with $\alpha$-Amino Acid Derivatives 

Tomonori Inazumi, ${ }^{\text {a }}$ Kazuo Yamada, ${ }^{\boldsymbol{a}}$ Yoshiaki Kuroki, ${ }^{a}$ Akikazu Kakehi ${ }^{\text {*,b }}$ and Michihiko Noguchi ${ }^{*, a}$<br>${ }^{a}$ Department of Applied Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755, Japan<br>${ }^{b}$ Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380, Japan


#### Abstract

The reactions of 6-(alk-2-enylamino)-5-formyl-1,3-dimethylpyrimidine-2,4(1H,3H)-diones 1 with $\alpha$ amino acid derivatives are described. The reaction of compounds of 1 with $N$-substituted amino acid derivatives affords azomethine ylides through well known condensation processes. A similar reaction with $N$-unsubstituted amino acid derivatives gives pyrimido[4,5-b]azepine derivatives via an intramolecular ene reaction of the imines, obtained from diones 1 and $N$-unsubstituted amino acid derivatives. The reaction profiles depend upon the $N$-substituent patterns of the amino acid derivatives utilised.


The condensation of aldehyde and $\alpha$-amino acid derivatives has been recognised as a versatile route of access to azomethine ylide intermediates. $N$-Substituted azomethine ylide intermediates are directly formed by the condensation with $N$ substituted amino acid esters ${ }^{2}$ or by the decarboxylative condensation with $N$-substituted amino acids. ${ }^{3}$ On the other hand, $N$-unsubstituted (or $N$-protonated) ylides are generated via a 1,2-hydrogen shift of imines, ${ }^{\dagger}{ }^{4}$ which are formed initially from aldehydes and $N$-unsubstituted amino acids and amino acid esters.

In previous papers, we described the successful utilisation of intramolecular azomethine imine ${ }^{6}$ and nitrile imine [ $3+2$ ]cycloaddition ${ }^{7}$ in pyrimidine- $2,4(1 \mathrm{H}, 3 \mathrm{H})$-dione systems leading to pyrazolo $\left[3^{\prime}, 4^{\prime}: 4,5\right]$ pyrido $\left.2,3-d\right]$ pyrimidine derivatives. In order to extend the scope and utility of such cyclisations, we attempted to examine the reaction of 6 -(alk-2-enylamino)5 -formyl-1,3-dimethylpyrimidine-2,4(1H,3H)-diones 1 with amino acid derivatives. The reaction profiles, interestingly, depended upon the substituent patterns on the nitrogen of the amino acid derivatives.
The reaction of diones 1 with $N$-substituted amino acid and amino acid esters gave azomethine ylide intermediates, which underwent an intramolecular $[3+2]$ cycloaddition as expectedly. On the other hand, 1,3 -dimethyl- 5 -(substituted amino)-6,9-(dihydro-5 $H$-pyrimid $[4,5-b]$ azepine- $2,4(1 H, 3 H)$ diones and/or 3 -substituted-6,8-dimethyl-1,2,3,4-tetrahydro-2,4-ethanopyrimido[4,5-d]pyrimidine-5,7(6H,8H)-diones were obtained in the reaction of compounds 1 with $N$-unsubstituted amino acid derivatives. The latter products, 2,4-ethanopyrimido $[4,5-d]$ pyrimidines, were found to be products from the pyrimidoazepines. For the synthesis of the pyrimidoazepine framework, a similar pathway to the intramolecular ene reaction of 6-(alk-2-enylamino)-1,3-dimethyl-5-(substituted imino) methylpyrimidine-2,4( $1 H, 3 H$ )-diones is proposed, which were obtained initially from diones 1 and $N$-unsubstituted amino acid derivatives.

## Results and Discussion

Reactions of Pyrimidine-2,4(1H,3H)-diones 1 with N -Methylglycine and its Ethyl Ester.-The reaction of 6-( $N$-allylbenzyl-
$\dagger$ The thermal imine-azomethine ylide tautomerisation via a 1,2hydrogen shift has also been reviewed. ${ }^{5}$
amino)-5-formyl-1,3-dimethylpyrimidine-2,4(1H,3H)-dione 1a with $N$-methylglycine 2 in 1,4-dioxane under reflux for 5 days afforded the pyrrolo $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ pyrido[2,3- $d$ ]pyrimidine 3a in $74 \%$ yield.

The structure of compound 3a was assigned on the basis of its spectral data and elemental analysis. The configuration between the protons at the 3 a - and 9 b -position was deduced to be cis from their coupling constant ( $J 4.8 \mathrm{~Hz}$ ). The reaction of 6- $\{N$-benzyl- $[(E)$-but-2-enyl]amino $\}-1 b$ and 6 -\{benzyl- $[(E)$ cinnamyl]amino $\}$-5-formyl-1,3-dimethylpyrimidine-2,4( 1 H ,
3 H )-dione 1c with compound 2 afforded the same type of products, compounds 3 b and 3 c in 43 and $48 \%$ yield, respectively (Scheme 1). The configurations between the protons at positions 3 and 3 a , and 3 a and 9 b , in compounds 3b and 3 c were again assigned to be trans and cis from their coupling constants and the rules of stereochemistry of azomethine ylide cycloaddition by comparison with precedents. ${ }^{8}$ These results mean that the decarboxylation of oxazolidinone intermediate A, prepared from substrates 1 and 2, gives azomethine ylide $\mathbf{B}$, which undergoes an intramolecular [ $3+2]$ cycloaddition in an endo-approaching manner to afford tricyclic products 3 with a $3 \mathrm{a}, 9 \mathrm{~b}-$ cis configuration.

Our next concern was directed toward the reaction of formyl diones 1 with $N$-substituted amino acid esters. The reaction of compound 1 a with $N$-benzylglycine ethyl ester 4 in toluene under reflux for 5 days gave pyrrolopyridopyrimidine $\mathbf{5 a}$ in $74 \%$ yield. The structure of compound $\mathbf{5 a}$ was confirmed by X-ray structure analysis and the configurations between the protons at positions 2 and 3 a , and 3 a and 9 b , were found to be trans and cis, respectively. A similar reaction of compound 1a with $N$-methylglycine ethyl ester 6 afforded the same type of product, compound 7a.

However, slightly different results were found in the reaction of compounds 1 b and 1 c with the methylglycinate 6 ; a mixture of two diastereoisomeric pyrrolopyridopyrimidines 7 and 8 was obtained (Scheme 2, Table 1). The assignments of the elaborate ${ }^{1} \mathrm{H}$ NMR spectra of products 7 and 8 showed that the configurations between the protons at positions 2 and 3, 3 and 3 a , and 3 a and 9 b for products 7 were cis, trans, and cis. On the other hand, those for products 8 were trans, trans, and cis (see Experimental section).
The formation of products $\mathbf{7}$ and $\mathbf{8}$ could be interpreted in terms of the endo approach of S-shaped azomethine ylide $\mathbf{C}$


Scheme 1 Reagents and conditions: i, 2, 1,4-dioxane, reflux
and W-shaped rotamer D, respectively (Fig. 1). However, Wshaped azomethine ylide $\mathbf{D}$ is expected to be unfavourable due to considerable steric repulsion between the $N$-substituent and the ester moiety. ${ }^{8}$ The conversion of compound 7 c into its stereoisomer $8 c$ under basic conditions suggests that isomers 8 would be formed by epimerisation at the 2-position of compounds 7 (Scheme 2). As mentioned above, the reaction of formyl diones 1 with $N$-substituted amino acid and amino acid esters afforded azomethine ylide intermediates through well known condensation processes.

Reactions of Pyrimidine-2,4(1H,3H)-diones 1 with $\alpha$-Phenylglycine and N -Unsubstituted Amino Acid Esters.-The reaction of compound 1a with $\alpha$-phenylglycine 9 in 1,4-dioxane under reflux for 2 days gave not the expected azomethine ylide adduct, a pyrrolopyridopyrimidine derivative, but a mixture of two products 10 a and 11a in $55 \%$ total yield. The formulae of products $10 a$ and 11a correspond to that of a product from substrates $1 \mathbf{1 a}$ and 9 after dehydration and decarboxylation. The IR spectrum of compound $10 a$ showed a characteristic NH absorption at $3310 \mathrm{~cm}^{-1}$. Its ${ }^{13} \mathrm{C}$ NMR spectrum exhibited six $\mathrm{sp}^{3}$ - and $14 \mathrm{sp}^{2}$-carbon signals, of which the signals at $\delta_{\mathrm{C}}$ 128.5 and 107.9 were assignable to those of the enamine moiety. In its ${ }^{1} \mathrm{H}$ NMR spectrum, the array of methine ( $\delta 4.47$ ), methylene ( $\delta 2.3-2.4$ ), olefin ( $\delta 4.77$ ), and olefin protons ( $\delta 5.89$ ) was elucidated by 2D nuclear Overhauser effect spectroscopy (NOESY) techniques. The structure of compound $10 a$ was deduced to be 9-benzyl-5-benzylamino-1,3-dimethyl-5,6-di-hydro- $5 H$-pyrimido[4,5-b]azepine-2,4( $1 H, 3 H$ )-dione. On the other hand, the IR spectrum of compound 11a showed no absorption bands due to NH stretching. In the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 11a eight $\mathrm{sp}^{3}$ - and twelve $\mathrm{sp}^{2}$-carbon signals were observed. Therein, the carbon signals at $\delta_{\mathrm{C}} 56.8$ and 77.1 were assigned to be methine signals by DEPT measurements. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the array of methine ( $\delta 4.09$ ), methylene ( $\delta 2.0$ ), methylene ( $\delta 2.2$ ), and methine protons ( $\delta 4.20$ ). The ratio of products $10 a$ and 11a depended upon the reaction conditions; in particular, compound 11a was obtained as the major product in $52 \%$ yield together with compound 10a (trace) on utilising toluene-psulfonic acid (PTSA) as a dehydration catalyst. Treatment of compound 10a with PTSA also gave the isomer 11a (Scheme 3 ). Therefore, the structure of compound 11a was assigned to be 1,3-dibenzyl-6,8-dimethyl-1,2,3,4-tetrahydro-2,4-ethanopyrimido $4,5-d$ ]pyrimidine- $5,7(6 H, 8 H)$-dione. The structures


endo -approach
Fig. 1 Transition states for cyclisation of azomethine ylides leading to adducts 7 and 8

Table 1 Preparation of pyrrolo[ $\left.2^{\prime}, 3^{\prime}: 4,5\right]$ pyrido[2,3- $d$ ]pyrimidines 5a, 7 and 8

| Run | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | Time ( $t / \mathrm{h}$ ) | Products | (Yield ${ }^{a} / \%$ ) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | H | Bn | 120 | 5a (74) |  |
| 2 | H | Me | 48 | 7a (78) |  |
| 3 | Me | Me | 30 | 7c (54) | 8c (10) |
| 4 | Ph | Me | 30 | 7d (51) | $\mathbf{8 d}(22)$ |

${ }^{a}$ Isolated yield.

10a and 11a were also confirmed by X-ray crystal-structure analyses (see Experimental section).

The reaction of compound 1b with $\alpha$-phenylglycine 9 in refluxing toluene gave $10 \mathrm{~b}(44 \%)$ and $11 \mathrm{~b}(10 \%)$ as mixtures of two inseparable diastereoisomers. In the same way, possible four products (10c and 11c) were formed as an intractable mixture in the identical reaction of compounds 1 c and 9.

In order to obtain a better understanding of this interesting cyclisation, the reactions of formyl dione 1a with $N$-unsubstituted amino acid esters were examined. Pyrimidazepine 13a and ethanopyrimidopyrimidine 14 a were formed in excellent total yield by the reaction with glycine ethyl ester 12a. A similar reaction with L-tyrosine methyl ester $\mathbf{1 2 b}$ gave ethano-


Scheme 2 Reagents and conditions: i, 4 (or 6), toluene, reflux; ii, EtONa (cat.), toluene, reflux

Table 2 Reaction of compound 1a with $N$-unsubstituted amino acid esters 12

| Run | R | $\mathrm{R}^{\prime}$ | Time ( $t / \mathrm{h}$ ) | Products | Yield ${ }^{\text {a }}$ (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | H | Et | 5 | 13a (61) | 14a (34) |
| 2 | $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OH}(p)$ | Me | 4 |  |  |
| 3 | $\mathrm{Pr}^{\mathbf{i}}$ | Me | 8 |  |  |
| 4 | Me | Me | 5 |  | (84) |

${ }^{a}$ Isolated yield. ${ }^{b}$ Single isomer. ${ }^{c}$ Mixture of two diastereoisomers.


Scheme 3 Reagents and conditions: i, 9, 1,4-dioxane, reflux; ii, PTSA (cat.), toluene, reflux
pyrimidopyrimidine 14b as a single isomer (Scheme 4). The reaction of 1a with L-leucine methyl ester 12c and l-alanine methyl ester 12d gave ethanopyrimidopyrimidines 14 c and 14 d , respectively. Products 14 c and 14 d thus obtained were found to be mixtures of two diastereoisomers. Both isomers of compound $\mathbf{1 4 c}$ and one of compound $14 d$ were isolated pure, but their configurations could not be determined. These results are summarised in Table 2. The reactions of formyl diones 1 lb and 1c with amino acid esters 12a and 12 c were also performed, to yield intractable mixtures of pyrimidazepines and ethanopyrimidopyrimidines.


Scheme 4 Reagents and conditions: i, 12, toluene, reflux
Therefore, the condensation reaction of formyl diones 1 with N -unsubstituted amino acid and amino acid esters afforded pyrimidazepine derivatives 10 and 13 probably through formation of 6-(alk-2-enylamino)-1,3-dimethyl-5-[(substituted imino)methyl]pyrimidine-2,4( $1 H, 3 H$ )-diones $\mathbf{E}$. The bond formation between the outer olefin carbon atom and the imine carbon atom in species $\mathbf{E}$ provides azepines fused by pyrimidine nuclei.

From the facts obtained so far and the results of the reaction of compounds 1 with primary amines, ${ }^{9}$ an ene reaction process is proposed for this azepine ring construction (Fig. 2). This means that, in the imine system $\mathbf{E}$, ene reaction occurs in preference to a 1,2 -hydrogen shift leading to an $N$-protonated ( $N$-unsubstituted) azomethine ylide.


Fig. 2 Intramolecular ene reaction of species $\mathbf{E}$ leading to pyrimidazepines 13

No products arising from azomethine ylide intermediates were formed in the above condensations of formyl diones 1 with $N$-unsubstituted amino acid and amino acid esters. However, an exception was observed in the reaction of compound 1a with diethyl aminomalonate 15. Two pyrrolopyridopyrimidines, 16 and 17 , were formed in 30 and $54 \%$ yield, respectively. These were characterised as isomers by the configuration between protons at the 3 a - and 9 b -position from their coupling constants; cis for $16(J 6.8 \mathrm{~Hz})$ and trans for 17 $(J 10.3 \mathrm{~Hz}$ ), respectively (Scheme 5). This means that the imine F, resulting from condensation of compounds 1 and 15, quickly tautomerised into $N$-protonated azomethine ylide $\mathbf{G}$. The ylide G underwent an intramolecular cycloaddition in the endoand exo-approaching manner, respectively, to give products 16 and 17. The highly acidic $\alpha$-hydrogen in $\mathbf{F}$ facilitates the tautomerisation into the ylide $\mathbf{G}$, which could be stabilised by two ethoxycarbonyl groups at the $\alpha$-position. ${ }^{10}$

In summary, we have shown here that the reaction profiles of formyl diones 1 with $\alpha$-amino acids and esters depend upon the substituent patterns of the amino nitrogen; the condensation reaction of compounds 1 with $N$-substituted amino acid derivatives gave azomethine ylides. On the other hand, the imines formed by the condensation of compounds 1 with $N$ unsubstituted amino acid derivatives underwent an intramolecular ene reaction leading to pyrimidazepine derivatives.

## Experimental

M.p.s were measured on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were measured on a JASCO IR-Report-100 spectrophotometer from samples as KBr pellets. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of deuteriochloroform solution were measured on JEOL GSX-400 and/or 270 spectrometers. $\mathrm{SiMe}_{4}$ was used as internal standard and $J$ values are given in Hz . Splitting patterns are indicated as s , singlet; d, doublet; $t$, triplet; $q$, quartet; m, multiplet; br, broad signal; and ov, overlapping with each other. Mass spectra were determined on a JEOL JMS-021G-2 or JMS-D spectrometer. Elemental analyses were performed on a Hitachi 026 CHN analyser. All non-aqueous reactions were run under a positive pressure of argon. All solvents were dried by standard methods before use. The progress of reactions was monitored by TLC (Silica Gel 60F-254, Merck). Chromatographic purification was performed with Wakogel C-200 (Wako Pure Chemical Industries) and/or Silica Gel 60 (230-400 mesh, Merck). Amino acid derivatives therein are commercially available and esters 6 ,


Scheme 5 Reagent and conditions: i, 15, 1,4-dioxane, reflux; ii, 1,2hydrogen shift

12a, 12c, 12d and 15 were obtained by treatment of the corresponding hydrochlorides with diisopropylethylamine in situ.

Reaction of 6-(N-allylbenzylamino)-5-formyl-1,3-dimethyl-pyrimidine-2,4(1H,3H)-dione 1a with N -Methylglycine 2; Typical Procedure.-A solution of compound 1a ( 0.313 g , 1 mmol ) and $N$-methylglycine $2(0.089 \mathrm{~g}, 1 \mathrm{mmol})$ in dry $1,4-$ dioxane ( $5 \mathrm{~cm}^{3}$ ) was heated under reflux for 5 days. The mixture was concentrated to dryness. The residue was subjected to column chromatography on silica gel with hexane-ethyl acetate ( $1: 5$ ) to give the pyrrolopyridopyrimidine $3 \mathrm{a}(0.246 \mathrm{~g}, 74 \%$ ).

5-Benzyl-1,6,8-trimethyl-2,3,r-3a,4,5,c-9b-hexahydro-1Hpyrrolo $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ pyrido $[2,3$-d $]$ pyrimidine- $7,9(6 \mathrm{H}, 8 \mathrm{H})$-dione $3 \mathrm{3a}$ was obtained as needles from benzene-hexane; m.p. 178-179 ${ }^{\circ} \mathrm{C}$ (Found: C, 67.35; H, 7.15; N, 16.5. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $67.03 ; \mathrm{H}, 7.11 ; \mathrm{N}, 16.46 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 1690$ and 1630 (CO); $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.25(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.85(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.02(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 2.32(1 \mathrm{H}, \mathrm{dd}, J 9.4$ and 19.0, 2-H), 2.45 ( $3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$ ), $2.90(1 \mathrm{H}, \mathrm{dd}, J 4.4$ and $13.7,4-\mathrm{H}), 3.05(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.20(1 \mathrm{H}$, d, $J 4.8,9 \mathrm{~b}-\mathrm{H}), 3.30(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.35$ and 3.37 (each 3 H , each s, 6 - and $8-\mathrm{Me}$ ), 4.14 and 4.24 (each 1 H , each d, $J$ 16.6, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.3-7.4(5 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz}) 26.0(6-\mathrm{Me}), 28.0$ (C-3), 29.4 (C-3a), 34.6 ( $8-\mathrm{Me}$ ), 41.2 ( $1-\mathrm{Me}$ ), 50.8 ( $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 54.6$ and 56.6 (C-4 and -9b), 59.1 (C-2), 95.9 (C-9a), 126.6, 127.8, 129.0 and 135.9 (Ph C), 152.6 (C-5a), 156.2 (C-7) and 163.1 (C-9); $m / z 340\left(\mathrm{M}^{+}\right)$.
5-Benzyl-1,3,6,8-tetramethyl-2,t-3,r-3a,4,5,c-9b-hexahydro1 H -pyrrolo $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ pyrido $[2,3-\mathrm{d}]$ pyrimidine- $7,9(6 \mathrm{H}, 8 \mathrm{H})$ dione 3b was obtained as prisms from benzene-hexane; m.p. 110-112 ${ }^{\circ} \mathrm{C}$ (Found: C, 68.1; H, 7.55; N, 15.8. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 67.77 ; \mathrm{H}, 7.39 ; \mathrm{N}, 15.81 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1685$ and 1630 $(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.01(3 \mathrm{H}, \mathrm{d}, J 6.8,3-\mathrm{Me}), 1.35(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 1.67(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 1.94(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $9.8,2-\mathrm{H})$, 2.42 ( $3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$ ), 2.95 ( 1 H , dd, J 4.0 and 13.7, 4-H), 3.1-3.2 (total $2 \mathrm{H}, \mathrm{ov}, 2$ - and $4-\mathrm{H}$ ), 3.29 ( $1 \mathrm{H}, \mathrm{d}, J 5.4,9 \mathrm{~b}-\mathrm{H}$ ), 3.34 and 3.37 (each 3 H , each s, 6- and $8-\mathrm{Me}$ ), 4.14 and 4.24 (each 1 H , each d, $\left.J 17.1, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and 7.3-7.4 (5 H, Ph); $\delta_{\mathrm{C}}(67 \mathrm{MHz}) 14.2$ (3-Me), 26.9 ( $6-\mathrm{Me}$ ), 33.0 (C-3), 33.4 ( $8-\mathrm{Me}$ ), 37.1 (C-3a), 40.2 ( $1-\mathrm{Me}$ ), $49.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, 55.5 and 56.7 (C-4 and $\left.-9 \mathrm{~b}\right)$, $62.9(\mathrm{C}-2)$, 94.6 (C-9a), 125.6, 127.6, 127.9 and 134.8 (Ph C), 151.5 (C-5a), $155.2(\mathrm{C}-7)$ and $162.0(\mathrm{C}-9) ; m / z 354\left(\mathrm{M}^{+}\right)$.

1-Benzyl-1,6,8-trimethyl-3-phenyl-2,t-3,r-3a,4,5,c-9b-hexa-hydro-1 H-pyrrolo $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ pyrido $[2,3-\mathrm{d}]$ pyrimidine $-7,9-$
$(6 \mathrm{H}, 8 \mathrm{H})$-dione 3 c was obtained as plates from hexane-ethyl acetate, m.p. $168-171^{\circ} \mathrm{C}$ (Found: C, 72.0; H, 6.7; N, 13.5. $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 72.09 ; \mathrm{H}, 6.78 ; \mathrm{N}, 13.45 \%\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 1690 and $1630(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.90(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.44$ $(1 \mathrm{H}, \mathrm{t}, J 8.4,2-\mathrm{H}), 2.50(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 2.72(1 \mathrm{H}, \mathrm{dd}, J 6.2$ and 8.4, 2-H), 3.07 ( $1 \mathrm{H}, \mathrm{dd}, J 4.5$ and 12.9, 4-H), 3.3-3.4 (total 2 H , ov, 3- and 4-H), 3.35 and 3.39 (each 3 H , each s, 6- and $8-\mathrm{Me}$ ), $3.60(1 \mathrm{H}, \mathrm{d}, J 5.5,9 \mathrm{~b}-\mathrm{H}), 4.14$ and 4.25 (each 1 H , each d, $J$ $\left.16.9, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.1-7.4(10 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz}) 28.1(6-\mathrm{Me})$, $34.4(8-\mathrm{Me}), 38.9$ and 41.0 (C-3 and -3 a ), 46.1 ( $1-\mathrm{Me}$ ), 50.6 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 56.3$ and 59.6 (C-4 and -9b), 65.1 (C-2), 95.6 (C-9a), 126.5 ( $\times 2$ ), 127.6, 127.7, 128.6, 129.0, 135.6 and $144.3(\mathrm{Ph} \mathrm{C})$, 152.5 (C-5a), 156.3 (C-7) and 163.1 (C-9); $m / z 416\left(\mathrm{M}^{+}\right)$.

Reaction of Compound 1a with N-Methylglycine Ethyl Ester 6. Typical Procedure.-A suspension of compound 1a (1 mmol ), ethyl $N$-methylglycinate hydrochloride ( 1 mmol ) and diisopropylethylamine ( 1.3 mmol ) in toluene ( $5 \mathrm{~cm}^{3}$ ) was heated under reflux for 2 days. The resultant precipitates were filtered off and the filtrate was concentrated to dryness. The residue was subjected to column chromatography on silica gel with hexane-ethyl acetate (1:1) to afford compound 7a ( $0.323 \mathrm{~g}, 78 \%$ ).
Ethyl 5-benzyl-1,6,8-trimethyl-7,9-dioxo-t-2,3,r-3a,4,5,6,7, 8,9,c-9b-decahydro-1H-pyrrolo [2',3':4,5] pyrido[2,3-d]pyrimi-dine-2-carboxylate 7a was obtained as prisms from ethanol; m.p. $149-151^{\circ} \mathrm{C}$ (Found: C, 64.3; H, 6.9; N, 13.6. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 64.06 ; \mathrm{H}, 6.84 ; \mathrm{N}, 13.58 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 1720,1695$ and $1635(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{2} \mathrm{Me}\right)$, 1.59 ( 1 H , ddd, $J 1.1,9.2$, and 13.6, 3-H), $1.93(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H})$, 2.21 ( 1 H , ddd, $J 3.7,8.4$, and 13.6, 3-H), 2.47 ( $3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$ ), $2.92(1 \mathrm{H}, \mathrm{dd}, J 4.4$ and $13.2,4-\mathrm{H}), 3.15(1 \mathrm{H}, \mathrm{dd}, J 12.8$ and 13.2 , $4-\mathrm{H}), 3.37(6 \mathrm{H}, \mathrm{ov}, 6-\mathrm{and} 8-\mathrm{Me}), 3.69(1 \mathrm{H}, \mathrm{dd}, J 3.7$ and 9.2 , $2-\mathrm{H}$ ), 4.14 and 4.27 (each 1 H , each d, $J 16.9, \mathrm{CH}_{2} \mathrm{Ph}$ ), 4.16 ( $1 \mathrm{H}, \mathrm{d}, J 4.8,9 \mathrm{~b}-\mathrm{H}$ ), $4.20\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right.$ ) and 7.2-7.4 ( $5 \mathrm{H}, \mathrm{Ph}$ ); $\delta_{\mathrm{C}}(67 \mathrm{MHz}) 14.5\left(\mathrm{CH}_{2} \mathrm{Me}\right), 28.0,29.3$ and 30.7 (C-3, -3a, and $6-\mathrm{Me}$ ), 34.4 and 35.8 ( $1-$ and $8-\mathrm{Me}$ ), 50.6 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 55.1(\mathrm{C}-4), 56.4(\mathrm{C}-9 \mathrm{~b}), 60.3(\mathrm{C}-2), 63.8\left(\mathrm{OCH}_{2} \mathrm{Me}\right)$, 95.8 (C-9a), 126.7, 127.9, 129.1 and 135.8 (Ph C), 152.6 (C-5a), $156.2(\mathrm{C}-9), 163.0(\mathrm{C}-7)$ and $174.0\left(\mathrm{CO}_{2}\right) ; m / z 412\left(\mathrm{M}^{+}\right)$.
Ethyl 1,5-dibenzyl-6,8-dimethyl-7,9-dioxo-t-2,3,r-3a,4,5,6,7,8, $9, \mathrm{c}-9 \mathrm{~b}$-decahydro-1H-pyrrolo $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ pyrido[2,3-d $]$ pyrimi-dine-2-carboxylate 5a was obtained as prisms from hexaneethyl acetate; m.p. $148-150^{\circ} \mathrm{C}$ (Found: C, 68.9; H, 6.6; N, 11.3. $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, $68.83 ; \mathrm{H}, 6.60 ; \mathrm{N}, 11.47 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1730,1695 and $1630(\mathrm{CO}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.27(3 \mathrm{H}, \mathrm{t}, J 7.3$, $\mathrm{CH}_{2} \mathrm{Me}$ ), $1.60(1 \mathrm{H}$, ddd, $J$ 1.1, 9.5 and 13.6, $3-\mathrm{H}$ ), $1.90(1 \mathrm{H}$, $\mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.14(1 \mathrm{H}$, ddd, J 3.7, 8.4 and 13.6, 3-H), 2.94 ( $1 \mathrm{H}, \mathrm{dd}, J 4.0$ and 13.2, 4-H), 3.3 ( $1 \mathrm{H}, \mathrm{ov}, 4-\mathrm{H}$ ), 3.31 and 3.37 (each 3 H , each s, 6- and $8-\mathrm{Me}$ ), $3.35(1 \mathrm{H}, \mathrm{dd}, J 3.7$ and 9.5 , 2-H), 3.8-4.3 (total 6 H , ov, $\mathrm{CH}_{2} \mathrm{Ph}$ and $\mathrm{OCH}_{2} \mathrm{Me}$ ), 4.43 $(1 \mathrm{H}, \mathrm{d}, J 4.8,9 \mathrm{~b}-\mathrm{H})$ and $7.1-7.4(10 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})$ $14.4\left(\mathrm{CH}_{2} \mathrm{Me}\right)$, 28.0, 29.1 and 30.7 (C-3, -3a and 6-Me), 34.4 $(8-\mathrm{Me}), 50.8$ and $51.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 54.4(\mathrm{C}-4), 56.4(\mathrm{C}-9 \mathrm{~b}), 59.4$ $\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 60.2(\mathrm{C}-2), 95.9(\mathrm{C}-9 \mathrm{a}), 126.5,126.7,127.8,127.9$, $128.2(\times 2), 129.1,135.8$ and $140.4(\mathrm{Ph} \mathrm{C}), 152.5(\mathrm{C}-5 \mathrm{a}), 156.2$ (C-9), $163.1(\mathrm{C}-7)$ and $174.1\left(\mathrm{CO}_{2}\right) ; m / z 488\left(\mathrm{M}^{+}\right)$.

The structue of compound 5a was confirmed by X-ray crystal-structure analysis and the crystal data are summarised in Table 3.
Ethyl 5-benzyl-1,3,6,8-tetramethyl-7,9-dioxo-t-2,t-3,r-3a,4, 5,6,7,8,9,c-9b-decahydro-1 H-pyrrolo [2', $\left.3^{\prime}: 4,5\right]$ pyrido [2,3-d]-pyrimidine-2-carboxylate 7b was obtained as prisms from ethanol; m.p. $169-171^{\circ} \mathrm{C}$ (Found: C, 64.85 ; H, 7.1; N, 12.9. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, 64.77; $\mathrm{H}, 7.09 ; \mathrm{N}, 13.14 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1725,1685 and $1635(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 0.98$ ( $3 \mathrm{H}, \mathrm{d}, J 7.3$,

Table 3 Crystal data for compounds 5a, 10a and 11a

|  | 5a | 10a | 11a |
| :---: | :---: | :---: | :---: |
| Molecular formula | $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}$ | $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}$ | $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}$ |
| Relative molecular mass | 488.59 | 402.49 | 402.49 |
| Crystal system | Triclinic | Monoclinic | Triclinic |
| Space group | P1](\#2) | P21/a(\#14) | P1 (\#2) |
| Cell constants |  |  |  |
| $a(\AA)$ | 11.042(2) | 13.004(3) | 14.982(2) |
| $b(\AA)$ | 12.798(2) | 14.565(4) | 16.610(3) |
| $c(\AA)$ | 10.412(2) | 12.710(2) | 9.507(1) |
| $\alpha\left({ }^{\circ}\right)$ | 95.62(1) |  | 102.83(1) |
| $\beta\left({ }^{\circ}\right)$ | 116.00(1) | 119.31(1) | 96.30(1) |
| $\gamma\left({ }^{\circ}\right)$ | 101.49(1) |  | $111.720(1)$ |
| Volume ( $\AA^{3}$ ) | 1267.0(4) | 2099.0(9) | 2094.3(5) |
| $Z$ | 2 | 4 | 4 |
| $D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 1.281 | 1.273 | 1.276 |

3-Me), 1.31 ( $\left.3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right), 1.65(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.14$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.50(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 3.01(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and 13.7 , $4-\mathrm{H}), 3.10(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $13.7,4-\mathrm{H}), 3.36$ and 3.37 (each 3 H , each s, 6- and $8-\mathrm{Me}), 3.80(1 \mathrm{H}, \mathrm{d}, J 8.8,2-\mathrm{H}), 4.1-4.3$ (total 3 H , ov, $\mathrm{OCH}_{2} \mathrm{Me}$ and CHHPh ), $4.32(1 \mathrm{H}, \mathrm{d}, J$ 16.6, $\mathrm{CH} H \mathrm{Ph}), 4.50(1 \mathrm{H}, \mathrm{d}, J 6.4,9 \mathrm{~b}-\mathrm{H})$ and $7.3-7.4(5 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67$ $\mathrm{MHz}) 14.5\left(\mathrm{CH}_{2} \mathrm{Me}\right), 15.6$ (3-Me), 28.0 (6-Me), 33.9 ( $8-\mathrm{Me}$ ), 36.3 (C-3a), 37.7 (C-3), 39.9 (1-Me), $49.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 54.4$ (C-4), 56.2 (C-9b), $59.9(\mathrm{C}-2), 70.1\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 96.9$ (C-9a), 126.7, 127.8, 129.0 and 135.8 (Ph C), 152.5 (C-5a), 155.8 (C-9), 163.1 (C-7) and $171.9\left(\mathrm{CO}_{2}\right) ; m / z 426\left(\mathrm{M}^{+}\right)$.

Ethyl 5-benzyl-1,3,6,8-tetramethyl-7,9-dioxo-c-2,t-3,r-3a,4, $5,6,7,8,9, \mathrm{c}-9 \mathrm{~b}-$ decahydro-1H-pyrrolo $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ pyrido[2,3-d]-pyrimidine-2-carboxylate $\mathbf{8 b}$ was obtained as crystals; m.p. $159-160^{\circ} \mathrm{C}$ (Found: C, 65.0 ; H, 7.2; N, $13.1 \%$ ); $v_{\max } / \mathrm{cm}^{-1} 1740$, 1690 and $1625(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.17(3 \mathrm{H}, \mathrm{d}, J 7.3,3-\mathrm{Me})$, $1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right), 1.36(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 1.73(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 2.44(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 2.74(1 \mathrm{H}, \mathrm{d}, J 6.4,2-\mathrm{H}), 2.93(1 \mathrm{H}$, dd, $J 4.4$ and 13.2, 4-H), 3.34 and 3.36 (each 3 H , each s, 6- and $8-\mathrm{Me}), 3.47(1 \mathrm{H}, \mathrm{dd}, J 12.2$ and $13.2,4-\mathrm{H}), 3.62(1 \mathrm{H}, \mathrm{d}, J 5.4$, $9 \mathrm{~b}-\mathrm{H}), 4.15$ and 4.26 (each 1 H , each d, $\left.J 16.1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.1-4.2$ (total 2 H , ov, $\mathrm{OCH}_{2} \mathrm{Me}$ ) and 7.3-7.5 (5 H, Ph); $\delta_{\mathrm{C}}(67 \mathrm{MHz})$ $14.2\left(\mathrm{CH}_{2} \mathrm{Me}\right), 20.6(3-\mathrm{Me}), 28.6(6-\mathrm{Me}), 34.5(8-\mathrm{Me}), 36.9$ (C3a), 40.0 and $40.3(\mathrm{C}-3$ and $1-\mathrm{Me}), 49.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 56.6$ and 57.2 (C-4 and -9b), $60.7(\mathrm{C}-2), 75.2\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 95.2$ (C-9a), 126.6, 127.8, 129.0 and 135.6 (Ph C), 152.5 (C-5a), 156.3 (C-9), 163.0 (C-7) and $173.3\left(\mathrm{CO}_{2}\right)$.

Ethyl 5-benzyl-1,6,8-trimethyl-7,9-dioxo-3-phenyl-t-2,t-3,r$3 \mathrm{a}, 4,5,6,7,8,9, \mathrm{c}-9 \mathrm{~b}$-decahydro- 1 H -pyrrolo $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ pyrido[2,3-d]-pyrimidine-2-carboxylate 7c was obtained as pale yellow prisms from benzene; m.p. 107-109 ${ }^{\circ} \mathrm{C}$ (Found: C, 68.8; H, 6.8; $\mathrm{N}, 11.4 . \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, $68.83 ; \mathrm{H}, 6.60 ; \mathrm{N}, 11.47 \%$; $v_{\max } / \mathrm{cm}^{-1} 1730,1715,1695$ and $1630(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 0.86(3$ H , dd, $J 6.8$ and $\left.7.3, \mathrm{CH}_{2} \mathrm{Me}\right), 2.35(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.57(3 \mathrm{H}, \mathrm{s}$, $1-\mathrm{Me}), 3.11(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and $13.1,4-\mathrm{H}), 3.22(1 \mathrm{H}, \mathrm{dd}, J 3.9$ and $9.3,3-\mathrm{H}), 3.30(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and $13.1,4-\mathrm{H}), 3.36$ and 3.40 (each 3 H , each s, 6- and $8-\mathrm{Me}$ ), $3.69(1 \mathrm{H}, \mathrm{dq}, J 6.8$ and 10.7 , OCHHMe), $3.69(1 \mathrm{H}, \mathrm{dq}, J 7.3$ and 10.7 , $\mathrm{OCH} H \mathrm{Me}$ ), 4.07 ( 1 $\mathrm{H}, \mathrm{d}, J 9.3,2-\mathrm{H}), 4.16$ and 4.32 (each 1 H , each $\mathrm{d}, J 17.1$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.81(1 \mathrm{H}, \mathrm{d}, J 6.3,9 \mathrm{~b}-\mathrm{H})$ and $7.1-7.4(10 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67$ $\mathrm{MHz}) 13.8\left(\mathrm{CH}_{2} \mathrm{Me}\right), 28.0(6-\mathrm{Me}), 34.0(8-\mathrm{Me}), 36.4(\mathrm{C}-3 \mathrm{a})$, $38.0(1-\mathrm{Me}), 49.8(\mathrm{C}-3), 50.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 55.6(\mathrm{C}-4), 56.2(\mathrm{C}-9 \mathrm{~b})$, 59.7 (C-2), $71.5\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 96.7$ (C-9a), 126.6, 127.0, 127.7, 128.1, 128.7, 129.0, 135.1 and 139.9 (Ph C), 152.5 (C-5a), 155.8 (C-9), $163.1(\mathrm{C}-7)$ and $170.9\left(\mathrm{CO}_{2}\right) ; m / z 488\left(\mathrm{M}^{+}\right)$.

Ethyl 5-benzyl-1,6,8-trimethyl-7,9-dioxo-3-phenyl-c-2,t-3,r$3 \mathrm{a}, 4,5,6,7,8,9, \mathrm{c}-9 \mathrm{~b}$-decahydro-1H-pyrrolo $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ pyrido[2,3-d]-pyrimidine-2-carboxylate 8c was obtained as prisms from benzene-hexane; m.p. $180-182^{\circ} \mathrm{C}$ (Found: C, 68.7; H, 6.65; N,
$11.6 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1740,1695$ and $1640(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.22$ ( $3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}$ ), $1.92(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.53(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me})$, $2.83(1 \mathrm{H}, \mathrm{d}, J 6.8,3-\mathrm{H}), 3.08(1 \mathrm{H}, \mathrm{dd}, J 4.4$ and $13.2,4-\mathrm{H}), 3.24$ $(1 \mathrm{H}, \mathrm{d}, J 6.8,2-\mathrm{H}), 3.35$ and 3.39 (each 3 H , each s, 6 - and 8 $\mathrm{Me}), 3.60(1 \mathrm{H}, \mathrm{dd}, J 12.2$ and $13.2,4-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{d}, J 5.4,9 \mathrm{~b}-$ H), 4.10 and 4.29 (each 1 H , each d, $J 16.6, \mathrm{CH}_{2} \mathrm{Ph}$ ), 4.1-4.2 (2 H , ov, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right)$ and $7.1-7.4(10 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz}) 14.2$ $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 28.1(6-\mathrm{Me}), 34.5(8-\mathrm{Me}), 37.8$ (1-Me), 39.8 (C-3a), $50.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 51.6(\mathrm{C}-3), 56.5(\mathrm{C}-4), 59.4(\mathrm{C}-9 \mathrm{~b}), 60.9(\mathrm{C}-2)$, $76.0\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 95.3(\mathrm{C}-9 \mathrm{a}), 126.4,127.0,127.5,127.8,128.7$, 129.0, 135.5 and 143.0 (Ph C), 152.4 (C-5a), 156.4 (C-9), 163.0 (C-7) and $174.8\left(\mathrm{CO}_{2}\right) ; m / z 488\left(\mathrm{M}^{+}\right)$.

The stereochemical relationship between the protons at positions 2 and 3 for compounds 7 and 8 were assigned on the basis of the coupling constants (lager one is cis) according to precedent. ${ }^{8}$ While the ethyl protons in the ethoxy group of ester 7c are apparently shielded magnetically, the proton at the 2-position of stereoisomer 8 c was observed at higher field ( $\Delta \delta$ 0.83 ppm ) than that of compound 7 c , due to the phenyl group at the 3-position.

Conversion of $\beta$-Ester 7c into $\alpha$-Ester $8 \mathbf{c}$ under Basic Conditions.-A solution of compound $7 \mathrm{c}(0.06 \mathrm{~g}, 0.14 \mathrm{mmol})$ and a catalytic amount of sodium ethoxide in toluene ( $1 \mathrm{~cm}^{3}$ ) was heated under reflux for 8 h . The reaction mixture was passed through a Florisil pad and the pad was washed with toluene ( $3 \times 3 \mathrm{~cm}^{3}$ ). The toluene filtrate was evaporated to dryness to give a $36: 64$ mixture of stereoisomers 7c and 8 c ( $0.055 \mathrm{~g}, 92 \%$ ).

Reaction of Compound 1a with Phenylglycine 9; Typical Procedure.-A solution of reagents $1 \mathbf{1 a}(1.0 \mathrm{mmol})$ and 9 ( 1.0 mmol ) in 1,4-dioxane ( $5 \mathrm{~cm}^{3}$ ) was heated under reflux for 52 h . The reaction mixture was concentrated to dryness, which was subjected to column chromatography on silica gel with hexane-ethyl acetate $(2: 1)$ to give isomeric products 11a (trace) and $10 \mathrm{a}(0.206 \mathrm{~g}, 54 \%$ ).

9-Benzyl-5-benzylamino-1,3-dimethyl-6,9-dihydro-5Hpyrimid $[4,5-\mathrm{b}]$ azepine $-2,4(1 \mathrm{H}, 3 \mathrm{H})$-dione 10 a was obtained as prisms from hexane-ethyl acetate; m.p. $145-146{ }^{\circ} \mathrm{C}$ (Found: C , $71.8 ; \mathrm{H}, 6.6 ; \mathrm{H}, 13.7 . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.62 ; \mathrm{H}, 6.51 ; \mathrm{N}$, $13.92 \%) ; v_{\max } / \mathrm{cm}^{-1} 3310(\mathrm{NH}), 1690$ and $1630(\mathrm{CO}) ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 1.63(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 2.36$ (total $2 \mathrm{H}, \mathrm{ov}, 6-\mathrm{H}_{2}$ ), 3.30 and 3.41 (each 1 H , each d, $J 13.6, \mathrm{NHCH}_{2} \mathrm{Ph}$ ), 3.38 and 3.47 (each 3 H , each s, 1 - and $3-\mathrm{Me}$ ), 4.24 and 4.32 (each 1 H , each d, $J$ $\left.13.9,9-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.47(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}) 4.77(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.89$ ( 1 H , ddd, $J 1.5,1.8$, and $9.6,8-\mathrm{H}$ ) and $7.1-7.3(10 \mathrm{H}, \mathrm{Ph})$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 28.6(3-\mathrm{Me}), 32.8(\mathrm{C}-6), 35.3(1-\mathrm{Me}), 49.5$ and $51.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 58.2(\mathrm{C}-5), 107.9(\mathrm{C}-7), 108.2(\mathrm{C}-4 \mathrm{a}), 126.6$,
128.0, 128.1, 128.5, 128.6, 128.8, 128.9, 135.1 and 140.4 (C-8 and Ph C ), 151.4 (C-9a), 153.2 (C-2) and 162.8 (C-4); $m / z 402$ $\left(\mathrm{M}^{+}\right)$.

1,3-Dibenzyl-6,8-dimethyl-1,2,3,4-tetrahydro-2,4-ethanopyrimido $[4,5-\mathrm{d}]$ pyrimidine $-5,7(6 \mathrm{H}, 8 \mathrm{H})$-dione 11 a was obtained as needles from hexane-ethyl acetate; m.p. $150-152{ }^{\circ} \mathrm{C}$ (Found: C, $71.5 ; \mathrm{H}, 6.5 ; \mathrm{N}, 14.0 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 1690$ and $1640(\mathrm{CO})$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.95-2.33$ (total 4 H , ov, 9 - and $10-\mathrm{H}$ ), 3.29 and 3.40 (each 3 H , each s, 6- and 8-Me), 3.51 and 3.75 (each 1 H , each d, $J 13.5,3-\mathrm{CH}_{2} \mathrm{Ph}$ ), 4.09 ( $1 \mathrm{H}, \mathrm{d}, J 5.4,4-\mathrm{H}$ ), 4.2 (total 3 H , ov, $2-\mathrm{H}$ and $1-\mathrm{CH}_{2} \mathrm{Ph}$ ) and $7.0-7.4(10 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}) 27.9$ ( $6-\mathrm{Me}$ ), 30.3 and 33.8 (C-9 and -10), 34.3 ( $8-\mathrm{Me}$ ), 53.4 and $55.5\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 56.8(\mathrm{C}-4)$, 77.1 (C-2), 99.2 (C-4a), 126.7, 127.4, 127.6, 128.5, 128.8, 128.9, 136.4 and 138.4 (Ph C), 152.6 and 152.9 (C-7 and -8a) and 161.3 (C-5); $m / z 402\left(\mathrm{M}^{+}\right)$.

The structures of compounds 10a and 11a were confirmed by X-ray structure analyses and the crystal data are summarised in Table 3.
9-Benzyl-5-benzylamino-1,3,6-trimethyl-6,9-dihydro-5Hpyrimid $[4,5-\mathrm{b}]$ azepine $-2,4(1 \mathrm{H}, 3 \mathrm{H})$-dione 10 b was obtained as prisms from hexane-ethyl acetate; m.p. 148-149 ${ }^{\circ} \mathrm{C}$ (Found: C, 72.3; $\mathrm{H}, 6.75 ; \mathrm{N}, 13.3 . \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $72.09 ; \mathrm{H}, 6.78$; $\mathrm{N}, 13.45 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 3340(\mathrm{NH}), 1695$ and $1660(\mathrm{CO}) ; \mathrm{m} / \mathrm{z}$ $416\left(\mathrm{M}^{+}\right), 325\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{Ph}\right)$ and $\left.310 \mathrm{M}^{+}-\mathrm{NHCH}_{2} \mathrm{Ph}\right)$.

This product 10b was obtained as an 89:11 mixture of two diastereoisomers. Isomer $\mathbf{1 0 b}$ (major): $\delta_{\mathbf{H}}(270 \mathrm{MHz}) 1.05(3 \mathrm{H}$, d, J6.0, 6 Me ), 1.3-1.7 ( $1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$ ), $2.54(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.28$ ( $1 \mathrm{H}, \mathrm{d}, J$ 13.9, NHCHHPh), 3.4 ( 1 H, ov, NHCH $H \mathrm{Ph}$ ), 3.39 and 3.48 (each 3 H , each s, $1-$ and $3-\mathrm{Me}$ ), $4.2(1 \mathrm{H}, \mathrm{ov}, 5-\mathrm{H})$, 4.23 and 4.35 (each 1 H , each d, $J 14.3, \mathrm{CH}_{2} \mathrm{Ph}$ ), $4.46(1 \mathrm{H}$, dt, $J 1.8$ and $9.9,7-\mathrm{H}), 5.77(1 \mathrm{H}$, dd, $J 2.6$ and $9.9,8-\mathrm{H})$ and $7.0-7.3(10 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz}) 21.0(6-\mathrm{Me}), 28.6(3-\mathrm{Me}), 35.5$ (1-Me), $37.0(\mathrm{C}-6), 51.2$ and $55.1\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 58.3(\mathrm{C}-5)$, 109.0 (C-4a), 113.8 (3-7), 128.5 (C-8), 126.4, 126.5, 127.9, 128.0, 128.6, 129.1, 135.1 and 141.1 (Ph C), 150.9 (C-9a), 153.3 (C-2) and 163.0 (C-4).
Isomer 10b (minor): $\delta_{\mathrm{H}}(270 \mathrm{MHz})$ (assigned signals) 0.92 (d, J $6.9,6-\mathrm{Me}$ ), 3.39 and 3.44 (each s, 1 - and $3-\mathrm{Me}$ ) and 4.86 (dd, $J 5.9$ and $9.2,7-\mathrm{H}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz}$ ) (assigned signals) 16.1 ( $6-\mathrm{Me}$ ), 28.3 ( $3-\mathrm{Me}$ ), 34.3 ( $1-\mathrm{Me}$ ), 39.3 (C-6), 53.0 and 57.1 $\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 59.5(\mathrm{C}-5), 103.4$ and 104.6 (C-4a and -7), 119.3, 126.7, 128.2, 128.4, 129.0 and 137.1 ( $\mathrm{C}-8$ and Ph C), 153.3 (C-2) and 163.5 (C-4).

1,3-Dibenzyl-6,8,9-trimethyl-1,2,3,4-tetrahydro-2,4-ethanopyrimido $[4,5-\mathrm{d}]$ pyrimidine- $5,7(6 \mathrm{H}, 8 \mathrm{H})$-dione 11 b was obtained as a solid; m.p. ${ }^{155-157}{ }^{\circ} \mathrm{C}$ (Found: C, 71.85 ; H, 6.50 ; N, $13.23 \%) ; v_{\max } / \mathrm{cm}^{-1} 1710$ and $1640(\mathrm{CO}) ; m / z 416\left(\mathrm{M}^{+}\right), 325\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{CH}_{2} \mathrm{Ph}\right)$ and $310\left(\mathrm{M}^{+}-\mathrm{NHCH}_{2} \mathrm{Ph}\right)$. This product was obtained as $56: 44$ mixture of two diastereoisomers.
11b (major): $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.02(3 \mathrm{H}, \mathrm{d}, J 6.8,9-\mathrm{Me}), 1.49$ ( $1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $13.6,10-\mathrm{H}), 2.67(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 3.26$ and 3.34 (each 3 H , each s, 6- and $8-\mathrm{Me}$ ), 3.69 and 3.80 (each 1 H , each d, $\left.J 13.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.10(1 \mathrm{H}, \mathrm{d}, J 6.8,4-\mathrm{H}), 4.43(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.62(1 \mathrm{H}, \mathrm{d}, J 6.0,2-\mathrm{H})$ and $7.1-7.4(\mathrm{Ph})$.
11 b (minor): $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.16(3 \mathrm{H}, \mathrm{d}, J 6.4,9-\mathrm{Me}), 1.81$ $(1 \mathrm{H}$, dd, $J 6.0$ and $10.8,10-\mathrm{H}$ ), 2.36 (total 2 H , ov, 9 - and $10-\mathrm{H}$ ), 3.18 and 3.35 (each 3 H , each s, 6- and $8-\mathrm{Me}$ ), 3.83 and 3.90 (each 1 H , each d, $J$ 13.7, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.05(1 \mathrm{H}, \mathrm{d}, J 4.8$, $2-\mathrm{H}), 4.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4,4-\mathrm{H})$ and $7.1-7.4$ (Ph).
N -(9-Benzyl-1,3-dimethyl-2,4-dioxo-2,3,4,5,6,9-hexahydro-1H-pyrimid [4,5-b]azepin-5-yl)glycine ethyl ester 13a was obtained as prisms from ethanol; m.p. $152-153^{\circ} \mathrm{C}$ (Found: C, 63.6; H, 6.6; N, 13.9. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, $63.30 ; \mathrm{H}, 6.58 ; \mathrm{N}$, $14.06 \%$ ); $v_{\max } / \mathrm{cm}^{-1} 3320(\mathrm{NH}), 1715,1690$ and 1630 (CO); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.25\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right), 1.25(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$, 2.40 (total 2 H , ov, $6-\mathrm{H}_{2}$ ), 2.80 and 3.02 (each 1 H , each d, $J$ 17.3, $\mathrm{NHCH}_{2} \mathrm{CO}_{2}$ ), 3.35 and 3.49 (each 3 H , each s, 1- and

3-Me), $4.12\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.27$ and 4.36 (each 1 H , each d, $\left.J 14.2, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.46(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}), 4.77(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $5.91(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.8,8-\mathrm{H})$ and $7.2-7.4(5 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})$ $14.2\left(\mathrm{CH}_{2} \mathrm{Me}\right), 28.5$ ( $3-\mathrm{Me}$ ), $33.0(\mathrm{C}-6), 35.2$ ( $1-\mathrm{Me}$ ), 48.8 $\left(\mathrm{NHCH}_{2} \mathrm{CO}_{2}\right), 50.3(\mathrm{C}-5), 58.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 60.5\left(\mathrm{OCH}_{2} \mathrm{Me}\right)$, 107.3 and 107.6 (C-4a and -7), 128.7, 128.8, 129.1 and 135.2 ( Ph C and $\mathrm{C}-8$ ), 151.6 (C-9a), $153.0(\mathrm{C}-2), 162.8$ (C-4) and 171.9 $\left(\mathrm{CO}_{2}\right) ; m / z 398\left(\mathrm{M}^{+}\right)$.
Ethyl(1-benzyl-6,8-dimethyl-5,7-dioxo-1,2,3,4,5,6,7,8-octa-hydro-2,4-ethanopyrimido $[4,5-\mathrm{d}]$ pyrimidin-3-yl)acetate 14a was obtained as prisms from hexane-ethyl acetate; m.p. 132$134{ }^{\circ} \mathrm{C}$ (Found: C, $63.1 ; \mathrm{H}, 6.5 ; \mathrm{N}, 14.0 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 1740,1690$ and $1630(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.25\left(3 \mathrm{H}, \mathrm{t} J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right)$, 2.0-2.3 (total 4 H , ov, 9 - and $10-\mathrm{H}$ ), $3.24(1 \mathrm{H}, \mathrm{d}, J 16.9$, $\mathrm{NCH}_{2} \mathrm{CO}_{2}$ ), 3.24 and 3.32 (each 3 H , each s, 6 - and $8-\mathrm{Me}$ ), 3.41 ( $1 \mathrm{H}, \mathrm{d}, J 16.9$, $\mathrm{NCHHCO}_{2}$ ), $4.17(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{OCHHMe}), 4.22$ ( $1 \mathrm{H}, \mathrm{brd}, J 4.4,4-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{d}, J 17.3, \mathrm{CH} H \mathrm{Ph}), 4.37(1 \mathrm{H}$, d, $J 6.8,2-\mathrm{H}), 4.65\left(1 \mathrm{H}, \mathrm{d}, J 17.3, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.3-7.4(5 \mathrm{H}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz}) 14.2\left(\mathrm{CH}_{2} \mathrm{Me}\right), 27.9(6-\mathrm{Me}), 30.4$ and 34.5 (C-9 and -10$), 34.1(8-\mathrm{Me}), 50.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 55.5$ and $57.7(\mathrm{C}-4$ and $\left.\mathrm{N}^{2} \mathrm{H}_{2} \mathrm{CO}_{2}\right), 61.0\left(\mathrm{OCH}_{2} \mathrm{Me}\right)$, $78.2(\mathrm{C}-2), 97.8(\mathrm{C}-4 \mathrm{a}), 126.2$, 127.7, 129.1 and 136.5 (Ph C), 152.4 (C-8a), 152.8 (C-7), 161.1 (C-5) and $172.2\left(\mathrm{CO}_{2}\right) ; m / z 398\left(\mathrm{M}^{+}\right)$.
Methyl $\alpha$-(1-benzyl-6,8-dimethyl-5,7-dioxo-1,2,3,4,5,6,7,8-octahydro-2,4-ethanopyrimido $[4,5-\mathrm{d}]$ pyrimidin $-3-y l)-\beta-(\mathrm{p}-$ hydroxyphenyl)propionate $\mathbf{1 4 b}$ was obtained as prisms from ethanol; m.p. 202-203 ${ }^{\circ} \mathrm{C}$ (Found: C, 65.8; H, 6.1; N, 11.4. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires C, $66.10 ; \mathrm{H}, 6.16 ; \mathrm{N}, 11.42 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3280(\mathrm{OH}), 1740,1695$ and $1620(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.9-2.2$ (total $4 \mathrm{H}, \mathrm{ov}, 9$ - and $10-\mathrm{H}), 2.86\left(1 \mathrm{H}, \mathrm{t}, J 11.7, \mathrm{NCHCH}_{2} \mathrm{Ar}\right)$, 3.30 (total 8 H , ov, 6 - and $8-\mathrm{Me}$, and $\mathrm{CHCH}_{2} \mathrm{Ar}$ ), $3.34(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 4.16(1 \mathrm{H}, \mathrm{d}, J 5.9,4-\mathrm{H}), 4.25$ and 4.50 (each 1 H , each d, $\left.J 17.2, \mathrm{CH}_{2} \mathrm{PH}\right), 4.40(1 \mathrm{H}, \mathrm{d}, J 4.8,2-\mathrm{H}), 6.71$ and 6.92 (each 2 H , each br d, J 7.7, ArH), 7.3-7.4 ( $5 \mathrm{H}, \mathrm{Ph}$ ) and $8.83(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz}) 27.7(6-\mathrm{Me})$, 29.5 and $33.8(\mathrm{C}-9$ and -10$)$, $33.1(8-\mathrm{Me}), 36.8\left(\mathrm{CHCH}_{2} \mathrm{Ar}\right), 51.5(\mathrm{OMe}), 54.7$ and 55.0 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{C}-4\right), 63.6$ (NCH), $76.9(\mathrm{C}-2), 100.2$ (C-4a), 115.4, 126.4, 126.6, 127.6, 128.9, 129.8, 136.0 and 156.1 ( Ph C), 152.4 and $152.5(\mathrm{C}-7$ and $-9 \mathrm{a}), 160.7(\mathrm{C}-5)$ and $172.7\left(\mathrm{CO}_{2}\right) ; m / z 490$ $\left(\mathrm{M}^{+}\right)$and $383\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}\right)$.

Methyl $\alpha$-(1-benzyl-6,8-dimethyl-5,7-dioxo-1,2,3,4,5,6,7,8-octahydro-2,4-ethanopyrimido $[4,5-\mathrm{b}]$ pyrimidin-3-yl)- $\beta$-methyl butyrate 14 c was obtained as prisms from hexane-ethyl acetate; m.p. $162-165^{\circ} \mathrm{C}$ (Found: C, 64.8; $\mathrm{H}, 7.1 ; \mathrm{N}, 13.3 . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, $64.77 ; \mathrm{H}, 7.09 ; \mathrm{N}, 13.14 \%$ ); $v_{\max } / \mathrm{cm}^{-1} 1720,1690$ and $1640(\mathrm{CO})$; $m / z 426\left(\mathrm{M}^{+}\right)$and $335\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{Ph}\right)$.
This product was obtained as an 83:17 mixture of two diastereoisomers. Isomer $\mathbf{1 4 c}$ (major) was isolated in an almost pure form and was obtained as prisms from hexane-benzene; m.p. $166-167^{\circ} \mathrm{C}$ (Found: C, 64.8: H, 7.1; N, $13.2 \%$ ); $\delta_{\mathrm{H}}(270$ $\mathrm{MHz}) 0.94$ and 0.99 (each 3 H , each d, $J 6.8$, CHMe $)_{\text {) , 1.9-2.2 }}$ (total $5 \mathrm{H}, \mathrm{ov}, 9$ - and $10-\mathrm{H}_{2}$ and CHMe ), $3.01(1 \mathrm{H}, \mathrm{d}, J 6.9$, NCH, 3.27 and 3.33 (each 3 H , each s, 6- and 8-Me), 3.50 ( 3 H , $\mathrm{s}, \mathrm{OMe}), 4.16(1 \mathrm{H}, \mathrm{d}, J 5.9,4-\mathrm{H}), 4.18$ and 4.56 (each 1 H , each d, $J$ 17.1, $\mathrm{CH}_{2} \mathrm{Ph}$ ), $4.32(1 \mathrm{H}, \mathrm{br}, 2-\mathrm{H})$ and $7.3-7.4(5 \mathrm{H}, \mathrm{Ph})$; $\delta_{\mathrm{C}}(67 \mathrm{MHz}) 17.2$ and $\left.20.1(\mathrm{CHMe})_{2}\right), 27.9$ ( $6-\mathrm{Me}$ ), 29.3 ( $\mathrm{CHMe}_{2}$ ), 32.0, 34.3 and 35.1 ( $\mathrm{C}-9$ and -10 , and $8-\mathrm{Me}$ ), 51.3 $(\mathrm{OMe}), 54.9$ and $55.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{C}-4\right), 67.2(\mathrm{NCH}), 77.6$ (C-2), 101.0 (C-4a), 126.5, 127.6, 129.0 and 136.5 (Ph C), 152.5 and $152.8(\mathrm{C}-7$ and $-8 \mathrm{a}), 161.1(\mathrm{C}-5)$ and $170.2\left(\mathrm{CO}_{2}\right) ; m / z 426$ $\left(\mathrm{M}^{+}\right)$.

Isomer 14c (minor) was isolated in a pure form and was obtained as prisms from hexane-benzene; m.p. $161-163^{\circ} \mathrm{C}$ (Found: C, 64.8; H, 7.1; N, 13.2\%); $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 0.94$ and 1.01 (each 3 H , each d, $J 6.8, \mathrm{CHMe}$ ) , $2.0-2.3$ ( 5 H, ov, 9 - and $10-$ $\mathrm{H}_{2}$ and $\mathrm{CHMe} \mathrm{Me}_{2}$ ), 3.23 ( $1 \mathrm{H}, \mathrm{ov}, \mathrm{NCHCO}_{2} \mathrm{Me}$ ), 3.22 and 3.33 (each 3 H , each s, 6- and 8-Me), $3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.28(1 \mathrm{H}, \mathrm{d}$, $J 5.9,4-\mathrm{H}), 4.39$ and 4.47 (each 1 H , each d, $J 18.1, \mathrm{CH}_{2} \mathrm{Ph}$ ),
$5.85(1 \mathrm{H}, \mathrm{d}, J 9.8,2-\mathrm{H})$ and $7.2-7.4(5 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz}) 16.6$ and $20.1\left(\mathrm{CHMe} e_{2}\right), 27.9(6-\mathrm{Me}), 28.9\left(\mathrm{CHMe}_{2}\right), 32.0$ and 34.3 (C-9 and -10 ), $35.1(8-\mathrm{Me}), 51.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 52.7(\mathrm{C}-4), 54.6$ $\left(\mathrm{NCHCO}_{2} \mathrm{Me}\right), 64.6(\mathrm{OMe}), 76.9(\mathrm{C}-2), 94.4(\mathrm{C}-4 \mathrm{a}), 125.9$, 127.6, 129.0 and 136.3 ( Ph C ), 152.5 and 152.8 ( $\mathrm{C}-7$ and -8 a ), $161.0(\mathrm{C}-5)$ and $171.8\left(\mathrm{CO}_{2}\right) ; m / z 426\left(\mathrm{M}^{+}\right)$and $335\left(\mathrm{M}^{+}-\right.$ $\mathrm{CH}_{2} \mathrm{Ph}$ ).

Methyl $\alpha$-(1-benzyl-6,8-dimethyl-5,7-dioxo-1,2,3,4,5,6,7,8-octahydro-2,4-ethanopyrimido[4,5-b] pyrimidin-3-yl) propionate 14 d was obtained as prisms from hexane-ethyl acetate; m.p. $174-178^{\circ} \mathrm{C}$ (Found: C, 63.6; H, 6.6; N, 14.3. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 63.30 ; \mathrm{H}, 6.58 ; \mathrm{N}, 14.06 \%$ ). This product was obtained as a $64: 36$ mixture of two diastereoisomers. Isomer 14d (major) was isolated pure and was obtained as prisms from hexane-benzene; m.p. $174^{\circ} \mathrm{C}$ (Found: C, 63.45; H, 6.7; N, $14.2 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ and $1695(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.41$ ( $3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0, \mathrm{CHMe}$ ), 1.9-2.2 (total 4 H , ov, 9- and 10-H), 3.09 $(1 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{CHMe}$ ), 3.30 and 3.34 (each 3 H , each s, 6- and $8-\mathrm{Me}$ ), 3.59 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), 4.08 ( $1 \mathrm{H}, \mathrm{d}, J 7.0,4-\mathrm{H}$ ), 4.20 and 4.62 (each 1 H , each d, $\left.J 17.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.38(1 \mathrm{H}, \mathrm{d}, J 4.4,2-\mathrm{H})$ and 7.2-7.5 ( $5 \mathrm{H}, \mathrm{Ph}$ ); $\delta_{\mathrm{C}}(67 \mathrm{MHz}) 16.7(\mathrm{CHMe}), 27.9(6-\mathrm{Me})$, $33.5(8-\mathrm{Me}), 28.8$ and $32.9(\mathrm{C}-9$ and -10$), 52.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 54.1$ (OMe), 55.2 (C-4), 56.1 (NCHMe), 77.8 (C-2), 101.4 (C-4a), 126.5, 127.6, 128.9 and $136.3(\mathrm{Ph} \mathrm{C}), 152.7$ and $152.8(\mathrm{C}-7$ and $-8 \mathrm{a}), 160.9(\mathrm{C}-5)$ and $174.1\left(\mathrm{CO}_{2}\right)$.

Isomer 14d (minor): $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.37(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe})$, 1.85-2.3 (total 4 H , ov, $9-$ and $10-\mathrm{H}$ ), 3.23 and 3.33 (each 3 H , each s, 6- and $8-\mathrm{Me}$ ), $3.38(1 \mathrm{H}, \mathrm{q}, J 6.8$, NCHMe ), 3.74 ( 3 H , s, OMe), 4.35-4.4 (total 3 H , ov, 2- and 4-H, and CH HPh ), 4.42 ( 1 $\mathrm{H}, \mathrm{d}, J 17.1, \mathrm{CH} H \mathrm{Ph})$ and $7.25-7.4(5 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz}) 17.7$ (CHMe), 27.8 (6-Me), 34.1 ( $8-\mathrm{Me}$ ), 32.0 and 35.0 (C-9 and -10), $52.2(\mathrm{OMe}), 53.7$ and $54.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$ and NCHMe$), 55.0(\mathrm{C}-4)$, 76.3 (C-2), 94.9 (C-4a), 126.1, 127.8, 129.2 and 136.4 ( Ph C ), 152.6 and $152.9(\mathrm{C}-7$ and $-8 \mathrm{a}), 161.0(\mathrm{C}-5)$ and $174.2\left(\mathrm{CO}_{2}\right)$.

Reaction of Formyl Dione 1a with Diethyl Aminomalonate 15.-A mixture of formyl dione $1 \mathbf{1 a}(1.0 \mathrm{mmol})$ diethyl aminomalonate hydrochloride ( 1.0 mmol ), and diisopropylethylamine ( 1.3 mmol ) in 1,4-dioxane ( $5 \mathrm{~cm}^{3}$ ) was heated under reflux for 17 h . The resultant precipitates were filtered off and the filtrate was evaporated to dryness. The residue was subjected to column chromatography on silica gel with dichloromethane-ethyl acetate $(5: 2)$ and $(2: 1)$ to give compounds $16(0.141 \mathrm{~g}, 30 \%)$ and $17(0.254 \mathrm{~g}, 54 \%)$, respectively.
Diethyl 5-benzyl-6,8-dimethyl-7,9-dioxo-2,3,r-3a,4,5,6,7,8,9,c9 b -decahydro-1 H-pyrrolo $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ pyrido [2,3-d] pyrimidine-2,2-dicarboxylate 16 was obtained as prisms from benzenehexane; m.p. $127-128^{\circ} \mathrm{C}$ (Found: C, 61.5; H, 6.45; N, 12.0. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires C, $61.26 ; \mathrm{H}, 6.43 ; \mathrm{N}, 11.91 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}$ $3350(\mathrm{NH}), 1735,1685$ and $1630(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.21(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right), 1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right), 2.10(1 \mathrm{H}, \mathrm{ov}$, $3 \mathrm{a}-\mathrm{H}), 2.13(1 \mathrm{H}, \mathrm{dd}, J 2.0$ and $14.2,3-\mathrm{H}), 2.57(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $14.2,3-\mathrm{H}), 3.02$ (total 2 H , ov, $\left.4-\mathrm{H}_{2}\right), 3.36(6 \mathrm{H}, \mathrm{s}, 6-\mathrm{and}$ $8-\mathrm{Me}$ ), 3.88 ( 1 H , br s, NH), 4.1-4.3 (total 6 H , ov, $\mathrm{OCH}_{2} \mathrm{Me}$ and $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.35(5 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz}) 13.9$ and 14.1 $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 27.8(6-\mathrm{Me}), 29.6(\mathrm{C}-3 \mathrm{a}), 33.1(\mathrm{C}-3), 34.7$ ( $8-\mathrm{Me}$ ), $49.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), \quad 53.0(\mathrm{C}-9 \mathrm{~b}), \quad 55.2(\mathrm{C}-4), \quad 61.9$ and 62.0 $\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 70.7(\mathrm{C}-2), 98.6(\mathrm{C}-9 \mathrm{a}), 126.8,128.0,129.1$ and 135.1 (Ph C), 152.6 (C-5a), 154.0 (C-7), 163.5 (C-9) and 170.3 and $172.0\left(\mathrm{CO}_{2}\right) ; m / z 470\left(\mathrm{M}^{+}\right)$and $397\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$.

Diethyl 5-benzyl-6,8-dimethyl-7,9-dioxo-2,3,r-3a,4,5,6,7,8,9-$\mathrm{t}-9 \mathrm{~b}-$ decahydro-1 H-pyrrolo $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ pyrido $[2,3-\mathrm{d}]$ pyrimidine-2,2-dicarboxylate 17 was obtained as prisms from benzenehexane; m.p. 192-194 ${ }^{\circ} \mathrm{C}$ (Found: C, 61.5; H, 6.5; N, 11.95\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{NH}), 1725,1690$ and $1630(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz})$ 1.24 and 1.26 (each 3 H , each $\mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}$ ), $1.68(1 \mathrm{H}$, dd, $J$ 12.2 and $12.7,3-\mathrm{H}), 2.18(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.81(1 \mathrm{H}, \mathrm{dd}, J 6.4$ and
12.7, $3-\mathrm{H}$ ), $3.03(1 \mathrm{H}, \mathrm{dd}, J 12.2$ and $12.2,4-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{dd}, J$ 3.4 and $12.2,4-\mathrm{H}$ ), 3.31 and 3.34 (each 3 H , each s , 6- and $8-\mathrm{Me}$ ), 3.68 ( 1 H , dd, J 3.9 and $10.3,9 \mathrm{~b}-\mathrm{H}$ ), $4.0-4.3$ (total 6 H , ov, $\mathrm{OCH}_{2} \mathrm{Me}$ and $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.36(1 \mathrm{H}, \mathrm{d}, J 3.9, \mathrm{NH})$ and $7.2-7.4$ $(5 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz}) 13.9$ and $14.1\left(\mathrm{CH}_{2} \mathrm{Me}\right), 27.7(6-\mathrm{Me})$, 34.2 and $34.8(\mathrm{C}-3$ and $8-\mathrm{Me}), 38.8(\mathrm{C}-3 \mathrm{a}), 50.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 57.5$ (C-4), $58.7(\mathrm{C}-9 \mathrm{~b}), 61.9$ and $62.0\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 72.0(\mathrm{C}-2), 97.7$ (C-9a), 126.5, 127.9, 129.1 and 135.5 (Ph C), 153.0 (C-5a), 154.8 (C-7), $161.9(\mathrm{C}-9)$ and 170.1 and $172.0\left(\mathrm{CO}_{2}\right) ; m / z 470\left(\mathrm{M}^{+}\right)$, $441\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right)$ and $397\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$.

Single-crystal $X$-Ray Structure Determinations.-Single crystals (prisms) of compounds 5a, 10a and 11a for X-ray diffraction studies were recrystallised from ethanol. A crystal of approximate dimensions $0.200 \times 0.120 \times 0.280 \mathrm{~mm}$ was used for data collection of compound 5a, one of $0.280 \times$ $0.400 \times 0.880 \mathrm{~mm}$ of compound 10 a , and one of $0.260 \times$ $0.400 \times 0.640 \mathrm{~mm}$ of compound 11a. All measurements were made on a Rigaku AFC5S diffractometer by employing graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. The unit-cell dimensions were obtained by least-squares analysis of 25 reflections within the range $26.6<2 \theta<37.4^{\circ}$ for compound 5a, $35.87<2 \theta<39.84^{\circ}$ for compound 10a, and $38.27<$ $2 \theta<39.69^{\circ}$ for compound 11a, respectively. Summaries of the crystal data for compounds 5a, 10a and 11a are given in Table 3. The $\omega-2 \theta$ scan technique to a maximum $2 \theta$-value of $55^{\circ}$ was used. Scans of $(1.05+0.30 \tan \theta)^{\circ}$ were made at a speed of $16^{\circ} / \mathrm{min}$ (in omega) for compound 5a, of $(1.21+0.30 \tan \theta)^{\circ}$ at a speed of $32^{\circ} / \mathrm{min}$ for compound 10 a , and of $(1.31+0.30$ $\tan \theta)^{\circ}$ at a speed of $32^{\circ} / \mathrm{min}$ for compound 11a. A total of 5159


Fig. 3 ORTEP drawing of compound 5a, with crystallographic numbering scheme


Fig. 4 ORTEP drawing of compound 10a with crystallographic numbering scheme


Fig. 5 PLUTO drawing of compound 11a (one of two independent molecules contained in the single crystal of compound 11a), with crystallographic numbering scheme
observed reflections (unique: 4854; $R_{\text {int }} 0.072$ ) for compound 5a, 5214 (unique: 5002; $R_{\text {int }} 0.049$ ) for compound 10a, and 9999 (unique: 9627; $R_{\text {int }} 0.028$ ) for compound 11a was collected. All calculations were performed using the TEXSAN program. ${ }^{11}$ Atoms other than hydrogen were refined anisotropically. The structures were solved by direct methods (MITHRIL) ${ }^{12}$ and refined by least squares to $R 0.053$ (compound 5a), 0.054 (compound 10a) and 0.055 (compound 11a). ORTEP ${ }^{13}$ drawings of compounds 5a and 10a are shown in Figs. 3 and 4. The crystal structure of compounds 11a contains two independent molecules.* One of these corresponds to the ethanopyrimidopyrimidine 11a and its PLUTO ${ }^{14}$ drawing is shown in Fig. 5.

Tables of fractional coordinates, bond lengths and angles, thermal parameters and hydrogen-atom coordinates for compounds 5a, 10a, and 11a have been deposited with the Cambridge Crystallographic Database Centre.

## Acknowledgements

Financial support of this work by the Ministry of Education, Science, and Culture of Japan (Grant No. 03650705) is gratefully acknowledged. We also thank Professors M. Tashiro and S. Kanemasa of Kyushu University for measurements of elemental analyses and NMR spectra.

## References

1 Part 11, N. Yasue, S.-I. Ishikawa and M. Noguchi, Bull. Chem. Soc. Jpn., 1992, 65, 2845.
2 P. N. Confalone and E. M. Huie, (a) J. Org. Chem., 1983, 48, 2994; (b) J. Am. Chem. Soc., 1984, 106, 7175; (c) M. Joucla, J. Mortier and J. Hamelin, Tetrahedron Lett., 1985, 26, 2775; (d) O. Tsuge, S. Kanemasa, M. Ohe and S. Takenaka, Chem. Lett., 1986, 973; (e) O. Tsuge, S. Kanemasa, M. Ohe and K. Yorozu, Chem. Lett., 1986, 1271; ( $f$ ) O. Tsuge, S. Kanemasa, M. Ohe, K. Yorozu, S. Takenaka and K. Ueno, Bull. Chem. Soc. Jpn., 1987, 60, 4067; (g) O. Tsuge, S. Kanemasa, M. Ohe and S. Takenaka, Bull. Chem. Soc. Jpn., 1987, 60, 4079.
3 R. Grigg and S. Thianpatanagul, J. Chem. Soc., Chem. Commun., 1984, 180; R. Grigg, M. F. Aly, V. Sridharan and S. Thianpatanagul, J. Chem. Soc., Chem. Commun., 1984, 182; M. Joucla and J. Mortier, J. Chem. Soc., Chem. Commun., 1985, 1566; R. Grigg, S. Surendrakumar, S. Thianpatanagul and D. Vipond, J. Chem. Soc., Chem. Commun., 1987, 47; R. Grigg, J. Idel, P. McMeekin and D. Vipond, J. Chem. Soc., Chem. Commun., 1987, 49. Also, see ref. $2 d$ and $2 g$.
4 R. Grigg and J. Kemp, J. Chem. Soc., Chem. Commun., 1977, 125; 1987, 109; Tetrahedron Lett., 1978, 2823; M. Joucla and J. Hamelin, Tetrahedron Lett., 1978, 2885; R. Grigg and J. Kemp, Tetrahedron Lett., 1980, 21, 2461; R. Grigg and H. Q. N. Gunaratne, J. Chem. Soc., Chem. Commun., 1982, 384; R. Grigg, H. Q. N. Gunaratne and J. Kemp, J. Chem. Soc., Perkin Trans. 1, 1984, 41; P. A. Ronald, R. Grigg, M. W. Jordan and J. F. Malone, Tetrahedron, 1985, 41, 3547.

5 R. Grigg, Chem. Soc. Rev., 1987, 16, 89.
6 M. Noguchi and K. Yamada, Synthesis, 1993, 145.
7 M. Noguchi, S. Nagata and S. Kajigaeshi, Chem. Pharm. Bull., 1986, 34, 3994.
8 D.-L. J. Wang, W. C. Ripka and P. N. Confalone, Tetrahedron Lett., 1984, 25, 4613; P. N. Confalone and R. A. Earl, Tetrahedron Lett., 1986, 27, 2695; S. Kanemasa, K. Sakamoto and O. Tsuge, Bull. Chem. Soc. Jpn., 1989, 62, 1960; S. Kanemasa, K. Doi and E. Wada, Bull. Chem. Soc. Jpn., 1990, 63, 2866. Also, see ref. $2 b$.
9 T. Inazumi, E. Harada, T. Mizukoshi, Y. Kuroki, A. Kakehi and M. Noguchi, following paper.

10 K. Amornraksa and R. Grigg, Tetrahedron Lett., 1980, 21, 2197.
11 TEXSAN TEXRAY, Structure Analysis Package, Molecular Structures Corporation, 1985.
12 C. J. Gilmore, J. Appl. Crystallogr., 1984, $17,42$.
13 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
14 S . Motherwell and W. Clegg, PlUTO, Program for Plotting Molecular and Crystal Structures, University of Cambridge, England, 1978.

Paper 3/04949C
Received 16th August 1993
Accepted 18th October 1993

